Математический кружок для 7-9 классов. Малый мехмат МГУ, МЦНМО, гимназия 1543

К сравнению
В избранное
Артикул:9011423
ВидеоУроки
Математический кружок для 7-9 классов. Малый мехмат МГУ, МЦНМО, гимназия 1543
Вес
Формат
Год
Тип упаковки
Количество DVD
Дополнительные услуги:
В наличии
800
11
Доставка по России
On-line оплата
Система скидок
Всегда на связи
Описание
Характеристики
Отзывы
Спивак А.В. Математический кружок для 7-9 классов

Страна: Россия
Тематика: Математика
Тип раздаваемого материала: Видеоурок
Продолжительность: 24:24:43
Год выпуска: 2011-2016
Язык: Русский
Перевод: Не требуется
Описание: Видеозапись занятий математического кружка А.В. Спивака для 7-9 классов:

1. Основная теорема арифметики.

1.1 Формулировка основной теоремы арифметики. 0:13:49

1.2 Неправильное доказательство. 0:21:05

1.3 Деление с остатком. 0:05:34

1.4 Доказательство Гаусса. 0:18:06

1.5 Шаг алгоритма Евклида. 0:11:52

1.6 НОД как линейная комбинация. 0:09:52

1.7 Доказательство Евклида. 0:08:05

1.8 Матрица и алгоритм Евклида. 0:10:35

1.9 Доказательство Цермело. 0:09:35

2. Турнир городов

1-2. Вычёркивание столбца из квадратной таблицы. 0:19:29

6-28. Симметрические функции. 0:05:01

7-13. Вневписанная окружность прямоугольного треугольника. 0:01:47

12-11. Перекрашивание трёхклеточных прямоугольников. 0:07:29

13-33. Корни и неравенства. 0:07:36

17-4. Угол между хордами и угол между хордой и касательной. 0:03:01

19-10. Гомотетия в задаче на построение. 0:02:57

30-40. Осевая симметрия и поворот на 60 градусов. 0:03:33

3. Всесоюзные математические олимпиады

24. Антисимметрические многочлены и малая теорема Ферма. 0:06:01

64. Разместите 1965 точек в квадрате площади 1. 0:11:12

78. Внутрь выпуклого четырёхугольника данной площади и данного периметра поместить окружность. 0:05:16

180. Неподвижная точка отображения. 0:06:34

254. Делимость. 0:01:56

272. Среднее арифметическое, дроби, индукция. 0:17:15

286. Перевезти 18 тонн груза на 7 кораблях. 0:05:41

328. Две последовательности и индукция. 0:03:57

441. Сумма квадратов количеств побед. 0:02:27

445. Сумма 1987-х степеней. 0:03:10

4. Задачник 'Кванта'
М24. Любая правильная дробь представима в виде суммы аликвотных дробей. 0:08:14
М62. Остатки от деления степеней двойки на нечётное число. 0:03:31
М265. Сумма величин углов между диагональю и рёбрами прямоугольного параллелепипеда. 0:07:07
М734. Проекция биссектрисы на сторону треугольника. 0:02:31
М736. Биссектриса, медиана и центр тяжести. 0:07:46
М757. Арифметические прогрессии из аликвотных дробей. 0:01:27
М1152. Формула Эйлера расстояния между центрами вписанной и описанной окружностей. 0:13:05
М1270. Делимость суммы степеней на 1991. 0:02:52
М1444. Один из коэффициентов многочлена отрицательный, а у степеней нет. 0:07:05
Цепи и антицепи. 1:25:30

5. Московская городская олимпиада
Три числа, сумма которых чётна (2016 год, А.В. Шаповалов). 0:07:08

6. Турниры математических боёв имени А.П. Савина

334. Равенство площадей двух треугольников. 0:04:09

7. Отдельные задачи
Малая теорема Ферма
Малая теорема Ферма. 1:49:31
Периодические дроби. 1:16:43
Расстановки чисел по окружности, или Первообразные корни. 0:13:58
Неравенства
Прямоугольник максимальной площади. 0:12:03
Сумма кубов и сумма 4-х степеней равна 1. 0:01:43
Средние арифметическое и геометрическое, гармоническое и квадратичное. 1:45:44
Расстановка натуральных чисел в клетках бесконечного листа бумаги

1. Периодическая расстановка. 0:18:34

2. Числа Фибоначчи с нечётными номерами и уравнение Маркова. 0:09:30

3. Арифметические прогрессии. 0:09:32

4. Алгебраическое доказательство. 0:10:13
Уравнения ПелляКорень из 2, уравнение Пелля и цепные дроби. 0:47:53
Уравнение Пелля, лекция 1. 1:29:58
Уравнение Пелля, лекция 2. 1:33:26
Задачи заочных олимпиад. 1:39:19
Поля из 2, 3, 4, 5, 7, 8 и 9 элементов. 1:42:04
Игра цзяньшицзы. 1:09:19
Площади прямоугольных треугольников с рациональными сторонами. 1:02:21

[u]Обновление[/u]: 5.10.2016. Добавлен файл 'Корень из 2, уравнение Пелля и цепные дроби'.

24.08.2016 улучшена файловая структура, добавлен рассказ о геометрическом доказательстве неравенства о среднем арифметическом и геометрическом для двух чисел и решение задачи турнира матбоёв имени А.П. Савина. Добавлена задача о расстановке чисел на клетчатой плоскости.

5.06.2016 добавлены три записи:
Турнир городов 6-28. Симметрические функции.
Прямоугольник максимальной площади.

272. Среднее арифметическое, дроби, индукция.
Качество: CAMRip
Формат: AVI
Видео кодек: MPEG4 DivX/Xvid
Аудио кодек: MP3
Видео: MPEG4 Video (AVI) 720х406 25.00 fps 1200 kbps
Аудио: MP3 44100Hz Stereo 128 kbps
[spoiler='Другие записи Малого мехмата МГУ и летних школ А.В. Спивака и Е.Б. Прониной']
Характеристики
Вес
Формат
Год
Тип упаковки
Количество DVD
Отзывов ещё нет — ваш может стать первым.
Все отзывы 0
общий рейтинг
C этим товаром также покупают
Фильм
Министерство неджентльменских дел (2024)
Министерство неджентльменских дел (2024)
4.7
Отзывов ещё нет
250
В наличии
Фильм
Борат 2 (2020)
Борат 2 (2020)
4.4
Отзывов ещё нет
250
В наличии
Фильм
Мисс и миссис Коп (2019)
Мисс и миссис Коп (2019)
5.0
Отзывов ещё нет
250
В наличии
Фильм
Слепой (2023)
Слепой (2023)
4.3
Отзывов ещё нет
250
В наличии
Фильм
Рождество без снега (2018)
Рождество без снега (2018)
4.8
Отзывов ещё нет
250
В наличии
Фильм
Naysayer (2019)
Naysayer (2019)
4.3
Отзывов ещё нет
250
В наличии
Фильм
Я и моё левое полушарие (2019)
Я и моё левое полушарие (2019)
4.8
Отзывов ещё нет
250
В наличии
Фильм
Bigger Than Africa (2018)
Bigger Than Africa (2018)
4.9
Отзывов ещё нет
250
В наличии