Описание
Характеристики
Отзывы
Семинары по теории сильных взаимодействий (ст. преп. Резниченко А.В.)
Страна: Россия
Тематика: Теоретическая физика
Тип раздаваемого материала: Видеолекции
Продолжительность: 50:30:00
Год выпуска: 2015
Язык: Русский
Перевод: Не требуется
Список лекций: Семинар № 1 Напоминание (из курса 'Физика элементарных частиц'). Изотопическая инвариантость. Общие замечания о флейворных симметриях SU(2) и SU(3). Изотопическая часть волновой функции π-мезона и протона. Трансформационные свойства спиноров и векторов. Реакция NN → dπ. Метод Шмушкевича, использование коэффициентов Клебша-Гордана и метод инвариантных амплитуд. Эффективный лагранжиан для реакции NN → dπ.
Семинар № 2 Реакция π N → π N: изотопическая SU(2)-инвариантная амплитуда. Эффективный лагранжиан. G-четность. Свойства G-четности: G-четность могут иметь лишь нестранные мезоны, т.е. s=B=0; [G, Ti]=0; формула G=C (-1)T для нейтральных компонент изомультиплета. Правила отбора по G-четности. Иерархия законов, запрещающих распады: связь статистики и момента; P,C,T- четности; G-четность. Пример: P-неинвариантный эффективный лагранжиан распада ω → π+ π- π0 (см. также семинар 3). Распад ρ → ππ: инвариантная амплитуда, эффективный лагранжиан, вычисление ширины распада ρ0 → π+ π-. Эффективный лагранжиан πNN-взаимодействия.
Семинар № 3 P-инвариантный эффективный лагранжиан распада ω → π+ π- π0. SU(3) флейворная симметрия: массовые формулы, ω-φ смешивание. Классификация неприводимых представлений группы SU(3). Разложение на неприводимые тензоры в группе SU(3). Инвариантные тензоры δij и εi j k. Октетные и синглетные представления для мезонов. Массовая формула 4m2K = m2π+ 3 m2η для октета псевдоскалярных мезонов: наивный кварковый счет, эффективный SU(3)-нарушающий лагранжиан δm2Tr[P2Y]. Неприводимые представления для барионов: синглеты, октеты и декуплеты. Массовые формулы для октета барионов 1/2+.
Семинар № 4 Нахождение угла ω-φ смешивания. Идеальное ω-φ смешивание. Модель векторной доминантности (МВД). Допущения модели. Связь констант gρ, gω и gφ. Вид амплитуды γ* → X(hadrons) в МВД.
Вывод соотношения gρ=gρππ в МВД. Нахождение отношения Γρ → πγ/Γω → πγ в МВД.
Семинар № 5 Калибровочная группа SU(N). Цветовая алгебра. Общее замечание о калибровочных группах. Алгебра Ли группы Ли. Коммутационное соотношение. Структурные константы. Возможность нормировки генераторов Tr[tatb]= λ δa b в алгебре группы SU(N). Полная антисимметричность структурных констант f a b c = -i/λ Tr(ta[tb,tc]) в этой нормировке. Квадратичный оператор Казимира C2=tata. Общее замечание об операторах Казимира группы SU(N) и неприводимых представлениях: явный вид операторов Казимира, таблицы Юнга, неприводимые представления SU(N) на тензорах с определенной симметрией. Соотношение полноты для генераторов ta группы SU(N) в фундаментальном представлении. Нахождение CF=(N2-1)/(2N). Вывод соотношения ta tb ta = - tb/(2N). Вывод соотношения ta tb= δa b/(2N)+ 1/2(d a b c+i f a b c) tc для генераторов в фундаментальном представлении. Свойства символов d a b c: вещественность, полная симметричность, бесследовость. Вывод соотношения f a b c f a b c'= N δc c'. Присоединенное представление для генераторов группы Ли. Тождество Якоби. Диаграммы цветовой алгебры.
Семинар № 6 Цветовая алгебра (продолжение). Вывод соотношения d a b c d a b c'= (N2-4)/N δc c'. Неприводимые тензоры в группе SU(3) и SU(N). Вывод формулы для размерности неприводимого представления (p,q) группы SU(3): dim (p,q)=(p+1)(q+1)(p+q+2)/2. Формула (без вывода) для размерности неприводимого представления в группе SU(N): пример для присоединенного представления группы SU(N). Разложение на неприводимые в группе SU(3) на примере 6⊗6=151 ⊕ 152 ⊕ 6*: тензорный метод и метод таблиц Юнга. Разложение N⊗N*=1⊕(N2-1) группе SU(N). Взаимодействие кварка и антикварка на малых расстояниях: модификация константы кулоновского взаимодействия для синглетного и октетного состояния.
Семинар № 7 Кварконии: c-c системы (мезоны ηc и J/Ψ). Оценка ширины распада ηc → γγ. Оценка ширины распада ηc → hadrons. Отношение этих двух ширин. Оценка αS(mc). Ширина распада ηc в адроны в водородоподобной модели. Оценка ширины распада J/Ψ → e+ e-. Ширина распада J/Ψ в адроны: однофотонный и трехглюонный механизмы. Оценка αS(mc) из сравнения Γ J/Ψ → hadrons/Γ J/Ψ → e+ e-. Критика нерелятивистского приближения и водородоподобной модели в системе c-c. Общие слова о непертурбативных эффектах.
Семинар № 8 Радиационные переходы в c-c системах. Магнитодипольные переходы. Оценка ширины распада J/Ψ → ηc+γ. Угловое распределение фотонов в случае 'выстроенного' поляризационного состояния J/Ψ.
Электрические дипольные переходы. Угловые распределения фотонов в переходах Ψ2S → χc0+γ, Ψ2S → χc1+γ, Ψ2S → χc2+γ (нерелятивистское приближение для инвариантных амплитуд). Тензорные мезоны. Тензор поляризации. Формула суммирования по поляризациям для тензорных мезонов. Лоренц-инвариантный эффективный лагранжиан перехода Ψ2S → χc2+γ. Лагранжиан квантовой хромодинамики (КХД). Духи Фаддеева-Попова. Унитарность. Калибровочные преобразования в КХД. Фиксация калибровки. Алгоритм нахождения лагранжиана духов. Лагранжиан духов для кулоновской калибровки. Правила Фейнмана для духов, следующие из этого лагранжиана.
Семинар № 9 Лагранжиан духов в аксиальной калибровке. Бездуховые калибровки. Выражение для суммы по физическим поляризациям глюонов. Унитарность S-матрицы в физическом пространстве. Соотношение унитарности для амплитуды qq → qq в четвертом порядке теории возмущений. Вычисление мнимой части (скачков) амплитуды с помощью правил Каткосского. Вывод простейших тождеств Славнова-Тейлора для амплитуд qq → gg и qq → cc. Роль духов в выполнении соотношения унитарности.
Семинар № 10 Функции Грина в квантовой теории поля (краткий обзор свойств). Выражение для функций Грина через поля в представлении взаимодействия. Вычисление по теории возмущений. Представление функций Грина через континуальный интеграл. Производящий функционал. Редукционная формула Лемана-Симанчика-Циммермана. Связь вариации от функционала с вариацией действия в случае инвариантной функциональной меры: инвариантность функций Грина относительно преобразований, для которых δS=0. Симметрия Бекки-Руе-Стора-Тютина (БРСТ). БРСТ-симметрия для лагранжиана КЭД в лоренцевской калибровке. Проверка инвариантности действия КЭД относительно БРСТ-преобразования. БРСТ-инвариантость функций Грина. Пример: функция Грина 'фотон-дух'. Вывод из БРСТ-инвариантности этой функции Грина неперенормируемости продольной части фотонного пропагатора.
Семинар № 11 БРСТ-симметрия для лагранжиана КХД. Нильпотентность оператора БРСТ. Проверка инвариантности действия КХД в лоренцевской калибровке относительно БРСТ-преобразования. БРСТ-классификация состояний спектра: пространства H0 (физические состояния), H1 (антидухи и продольные глюоны) и H2 (духи и глюоны, поляризованные 'назад'). БРСТ-инвариантость функций Грина в КХД. Пример: функция Грина 'антидух-глюон-кварк-антикварк'. Вывод соотношений, связывающих амплитуды qq → gg и qq → cc, из БРСТ-инвариантности этой функции Грина.
Семинар № 12 Вычисление β-функции в КХД в однопетлевом приближении. Перенормировка полей и операторов лагранжиана КХД. Константы перенормировки и контрчлены. Перенормированная теория возмущений, новые контрчленные вершины, условия перенормировки. Выражение для gR через константы перенормировки (для разных вершинных функций в лагранжиане КХД). Вершина взаимодействия глюон-кварк-антикварк.
Вычисление контрчлена δ3(μ) (перенормировка глюонного поля) в размерной регуляризации в фейнмановской калибровке (ξ=1): условие перенормировки для поляризационного операто
Страна: Россия
Тематика: Теоретическая физика
Тип раздаваемого материала: Видеолекции
Продолжительность: 50:30:00
Год выпуска: 2015
Язык: Русский
Перевод: Не требуется
Список лекций: Семинар № 1 Напоминание (из курса 'Физика элементарных частиц'). Изотопическая инвариантость. Общие замечания о флейворных симметриях SU(2) и SU(3). Изотопическая часть волновой функции π-мезона и протона. Трансформационные свойства спиноров и векторов. Реакция NN → dπ. Метод Шмушкевича, использование коэффициентов Клебша-Гордана и метод инвариантных амплитуд. Эффективный лагранжиан для реакции NN → dπ.
Семинар № 2 Реакция π N → π N: изотопическая SU(2)-инвариантная амплитуда. Эффективный лагранжиан. G-четность. Свойства G-четности: G-четность могут иметь лишь нестранные мезоны, т.е. s=B=0; [G, Ti]=0; формула G=C (-1)T для нейтральных компонент изомультиплета. Правила отбора по G-четности. Иерархия законов, запрещающих распады: связь статистики и момента; P,C,T- четности; G-четность. Пример: P-неинвариантный эффективный лагранжиан распада ω → π+ π- π0 (см. также семинар 3). Распад ρ → ππ: инвариантная амплитуда, эффективный лагранжиан, вычисление ширины распада ρ0 → π+ π-. Эффективный лагранжиан πNN-взаимодействия.
Семинар № 3 P-инвариантный эффективный лагранжиан распада ω → π+ π- π0. SU(3) флейворная симметрия: массовые формулы, ω-φ смешивание. Классификация неприводимых представлений группы SU(3). Разложение на неприводимые тензоры в группе SU(3). Инвариантные тензоры δij и εi j k. Октетные и синглетные представления для мезонов. Массовая формула 4m2K = m2π+ 3 m2η для октета псевдоскалярных мезонов: наивный кварковый счет, эффективный SU(3)-нарушающий лагранжиан δm2Tr[P2Y]. Неприводимые представления для барионов: синглеты, октеты и декуплеты. Массовые формулы для октета барионов 1/2+.
Семинар № 4 Нахождение угла ω-φ смешивания. Идеальное ω-φ смешивание. Модель векторной доминантности (МВД). Допущения модели. Связь констант gρ, gω и gφ. Вид амплитуды γ* → X(hadrons) в МВД.
Вывод соотношения gρ=gρππ в МВД. Нахождение отношения Γρ → πγ/Γω → πγ в МВД.
Семинар № 5 Калибровочная группа SU(N). Цветовая алгебра. Общее замечание о калибровочных группах. Алгебра Ли группы Ли. Коммутационное соотношение. Структурные константы. Возможность нормировки генераторов Tr[tatb]= λ δa b в алгебре группы SU(N). Полная антисимметричность структурных констант f a b c = -i/λ Tr(ta[tb,tc]) в этой нормировке. Квадратичный оператор Казимира C2=tata. Общее замечание об операторах Казимира группы SU(N) и неприводимых представлениях: явный вид операторов Казимира, таблицы Юнга, неприводимые представления SU(N) на тензорах с определенной симметрией. Соотношение полноты для генераторов ta группы SU(N) в фундаментальном представлении. Нахождение CF=(N2-1)/(2N). Вывод соотношения ta tb ta = - tb/(2N). Вывод соотношения ta tb= δa b/(2N)+ 1/2(d a b c+i f a b c) tc для генераторов в фундаментальном представлении. Свойства символов d a b c: вещественность, полная симметричность, бесследовость. Вывод соотношения f a b c f a b c'= N δc c'. Присоединенное представление для генераторов группы Ли. Тождество Якоби. Диаграммы цветовой алгебры.
Семинар № 6 Цветовая алгебра (продолжение). Вывод соотношения d a b c d a b c'= (N2-4)/N δc c'. Неприводимые тензоры в группе SU(3) и SU(N). Вывод формулы для размерности неприводимого представления (p,q) группы SU(3): dim (p,q)=(p+1)(q+1)(p+q+2)/2. Формула (без вывода) для размерности неприводимого представления в группе SU(N): пример для присоединенного представления группы SU(N). Разложение на неприводимые в группе SU(3) на примере 6⊗6=151 ⊕ 152 ⊕ 6*: тензорный метод и метод таблиц Юнга. Разложение N⊗N*=1⊕(N2-1) группе SU(N). Взаимодействие кварка и антикварка на малых расстояниях: модификация константы кулоновского взаимодействия для синглетного и октетного состояния.
Семинар № 7 Кварконии: c-c системы (мезоны ηc и J/Ψ). Оценка ширины распада ηc → γγ. Оценка ширины распада ηc → hadrons. Отношение этих двух ширин. Оценка αS(mc). Ширина распада ηc в адроны в водородоподобной модели. Оценка ширины распада J/Ψ → e+ e-. Ширина распада J/Ψ в адроны: однофотонный и трехглюонный механизмы. Оценка αS(mc) из сравнения Γ J/Ψ → hadrons/Γ J/Ψ → e+ e-. Критика нерелятивистского приближения и водородоподобной модели в системе c-c. Общие слова о непертурбативных эффектах.
Семинар № 8 Радиационные переходы в c-c системах. Магнитодипольные переходы. Оценка ширины распада J/Ψ → ηc+γ. Угловое распределение фотонов в случае 'выстроенного' поляризационного состояния J/Ψ.
Электрические дипольные переходы. Угловые распределения фотонов в переходах Ψ2S → χc0+γ, Ψ2S → χc1+γ, Ψ2S → χc2+γ (нерелятивистское приближение для инвариантных амплитуд). Тензорные мезоны. Тензор поляризации. Формула суммирования по поляризациям для тензорных мезонов. Лоренц-инвариантный эффективный лагранжиан перехода Ψ2S → χc2+γ. Лагранжиан квантовой хромодинамики (КХД). Духи Фаддеева-Попова. Унитарность. Калибровочные преобразования в КХД. Фиксация калибровки. Алгоритм нахождения лагранжиана духов. Лагранжиан духов для кулоновской калибровки. Правила Фейнмана для духов, следующие из этого лагранжиана.
Семинар № 9 Лагранжиан духов в аксиальной калибровке. Бездуховые калибровки. Выражение для суммы по физическим поляризациям глюонов. Унитарность S-матрицы в физическом пространстве. Соотношение унитарности для амплитуды qq → qq в четвертом порядке теории возмущений. Вычисление мнимой части (скачков) амплитуды с помощью правил Каткосского. Вывод простейших тождеств Славнова-Тейлора для амплитуд qq → gg и qq → cc. Роль духов в выполнении соотношения унитарности.
Семинар № 10 Функции Грина в квантовой теории поля (краткий обзор свойств). Выражение для функций Грина через поля в представлении взаимодействия. Вычисление по теории возмущений. Представление функций Грина через континуальный интеграл. Производящий функционал. Редукционная формула Лемана-Симанчика-Циммермана. Связь вариации от функционала с вариацией действия в случае инвариантной функциональной меры: инвариантность функций Грина относительно преобразований, для которых δS=0. Симметрия Бекки-Руе-Стора-Тютина (БРСТ). БРСТ-симметрия для лагранжиана КЭД в лоренцевской калибровке. Проверка инвариантности действия КЭД относительно БРСТ-преобразования. БРСТ-инвариантость функций Грина. Пример: функция Грина 'фотон-дух'. Вывод из БРСТ-инвариантности этой функции Грина неперенормируемости продольной части фотонного пропагатора.
Семинар № 11 БРСТ-симметрия для лагранжиана КХД. Нильпотентность оператора БРСТ. Проверка инвариантности действия КХД в лоренцевской калибровке относительно БРСТ-преобразования. БРСТ-классификация состояний спектра: пространства H0 (физические состояния), H1 (антидухи и продольные глюоны) и H2 (духи и глюоны, поляризованные 'назад'). БРСТ-инвариантость функций Грина в КХД. Пример: функция Грина 'антидух-глюон-кварк-антикварк'. Вывод соотношений, связывающих амплитуды qq → gg и qq → cc, из БРСТ-инвариантности этой функции Грина.
Семинар № 12 Вычисление β-функции в КХД в однопетлевом приближении. Перенормировка полей и операторов лагранжиана КХД. Константы перенормировки и контрчлены. Перенормированная теория возмущений, новые контрчленные вершины, условия перенормировки. Выражение для gR через константы перенормировки (для разных вершинных функций в лагранжиане КХД). Вершина взаимодействия глюон-кварк-антикварк.
Вычисление контрчлена δ3(μ) (перенормировка глюонного поля) в размерной регуляризации в фейнмановской калибровке (ξ=1): условие перенормировки для поляризационного операто
Характеристики
Вес
0.22 кг
Формат
(ВИДЕО)
Год
2015
Тип упаковки
Пластиковый бокс
Количество DVD
6
Отзывов ещё нет — ваш может стать первым.
Все отзывы 0